Installing RF Bone

RF Bone requires 3DStudio MAX 4.x and Character Studio 3.x.

1. Copy “rf_bone.dlm” into a plugin directory for Max 4. Example: “\3dsmax4\plugins\”

2. Make sure this directory is in your plugin paths for Max. Check this in Max under Customize/Configue Paths/Plugins/

Using RF Bone

Contents:

Some rules to follow first

Naming Conventions for FK Bones

Making an FK chain in Max

Setting up a Character

Setting up LODs

Using BIPED

Weighting Bones

Bone Weighting Chart

Exporting .vcm files

Exporting .mvf files

Naming Conventions for MVFs

Re-Using MVF Animation sets across multiple characters

Adding Bones to an already setup and RF-Boned Character

Adding Prop Tags to your Character

Using the entity.tbl
Please feel free to use the sample Max files provided for reference as you learn how to use RFBone:

RFBone-SampleSetup.max
- Example setup file for model/VCM exporting

RFBone-SampleAnimation.max
- Example animation file for exporting an MVF
Some rules to follow first:

1) Scale your mesh, and center its pivot point. This center of the mesh should be at 0,0,0 in the Max file.

2) Make sure you reset the transform of your mesh after you scale it to the right size.

3) There can be nothing else in the stack of the mesh

4) Never, ever ever ever after setting up a character in RF Bone, must you change the name of your bones or the names inside the RF Bone modifier panel. This could break the setup, and if code is using a bone name as reference for anything, it will cause that to not work. (As a note, if you DO accidentally change a bone name in RF Bone, just figure out what it was and retype it in by hand).

5) There is a 50 bone limit for RFBone. NO character can have more than 50 bones. It won’t work. At all.

Naming Conventions for FK Bones:

All FK bones have a similar naming convention. I will list what all bones should be, with the “XXXX” being the four letter code unique to each character. . There has to be a four letter code unique to each character in front of each bone name. For example, the Ultor Suit’s code is ULT1. (This same example is used for MVF naming, so I ain’t original, sue me (). Here’s da bones:

Bone Name:

What it is:

XXXX-BDBN-Fingers-L01, 02, 03, etc.

Fingers on left hand.

XXXX-BDBN-Fingers-R01, 02, 03, etc.

Fingers on right hand.

XXXX-BDBN-Foot-L

Left Foot

XXXX-BDBN-Foot-R

Right Foot

XXXX-BDBN-Hand-L

Left Hand

XXXX-BDBN-Hand-R

Right Hand

XXXX-BDBN-Head

Head

XXXX-BDBN-LowerArm-L

Left forearm

XXXX-BDBN-LowerArm-R

Right forearm

XXXX-BDBN-LowerLeg-L

Left Calf (between knee and ankle)

XXXX-BDBN-LowerLeg-R

Right Calf (between knee and ankle)

XXXX-BDBN-Root

Root Bone

XXXX-BDBN-Pelvis

Pelvis

XXXX-BDBN-Spine01, 02, 03, etc.

Spine Bones. 01 is closest to root, on up.

XXXX-BDBN-Thumb-L

Left Thumb

XXXX-BDBN-Thumb-R

Right Thumb

XXXX-BDBN-UpperArm-L

Left bicep/tricep

XXXX-BDBN-UpperArm-R

Right bicep/tricep

XXXX-BDBN-UpperLeg-L

Left thigh

XXXX-BDBN-UpperLeg-R

Right thigh

These naming conventions are set in stone. Use them as a rule so that ALL character setups are similar. It’ll help you in the long run. Any extra bones needed for any particular setup, name accordingly (a rocket launcher on the left shoulder would be something like “XXXX-BDBN-Rocket-L” or something). Some of the listed bones won’t be needed. Thumbs, fingers and shoulders won’t be used for many characters. Don’t make them if they aren’t needed, try to use as FEW bones as possible (while keeping enough to animate properly). More bones means more memory used. I would keep a setup around 25 bones. There is generally no need for more than that.

Making an FK chain in Max:

Select the Mesh and scale it to the proper size. This is VERY important, as once you set the character up in RFBone there is no scaling allowed.

Once it’s scaled, you MUST reset the transform through the utilities panel. I repeat, YOU MUST RESET THE TRANSFORM through the utilities panel.
Collapse to Editable mesh, make it a selection set called “XXXX-Mesh”, and freeze it.

Now, make boxes to create the bones for the character. See the Max file for an example, or use those already created bones for your own. If you are creating new bones, apply edit mesh to all bones and collapse the stacks. Then reset the transforms of the bones, and collapse them again so that they are editable meshes. If you are using the supplied bones from the sample Max file, there is no need to do that.

Once you have them all set, you get to use edit mesh 2 (or edit mesh)! DO NOT, under any circumstance, use the scale tool for this. You MUST use edit mesh to resize/reshape the bones to match the new character mesh. Get it as close as possible, because these bones are going to represent this mesh while you animate. Remember where your pivot points are, and restrict the shape of the bones to not become too deceiving.

Make any new bones for extra parts of the character, if they are needed. If they are part of the spine (i.e., an animatable rocket pack), copy a spine bone to keep the same pivot point orientation. The same with any other part, copy whatever bones it relates to the most, and reshape/resize it.

****Once you have all the pieces resized/reshaped, link them up FK style (don’t reset transform ANY of these bones, they have pivot points set up that would be bad to ruin). The legs should end at the pelvis, which links to the root. The arms and head link to the topmost spine bone, which links in order down to the lowest spine bone. The lowest spine bone links to the root. ****

Rename the bones to what they should be. Follow the bone naming chart above. Also rename any new bones you made yourself (. Now select all the FK bones, and make them into a selection set called “XXXX-FKBones-All”.

Make keyframes for ALL FK bones at frame zero and frame 1. Use trackview to select all the keyframes on both frames, and make the position keys linear and the rotation keys have continuity of zero. Check to make sure everything rotates properly. Your FK setup is now complete.

IMPORTANT: Make sure you keep frame zero at the character’s rest pose. THIS IS VERY IMPORTANT. If you have to add a bone or add tags later, or do ANYTHING to the mesh in ANY animation file, this frame is where you would do it, since it will remain consistent throughout all the files.

Setting up a Character:

1) Unhide/unfreeze your FK Bones and your Mesh.

2) Select your mesh.

3) Apply the RF Bone modifier.

4) In the RF Bone modifier, go to the “Mesh Parameters” list, and click “Add Bones”

5) Select ALL the FK bones. This will list the FK bones in the RF Bone channels. Most characters shouldn’t have more than 20-25, some will.

6) Each Channel can be selected by clicking on the name. If you want to select more than one, hold down the control key while selecting.

7) Weight the vertices. The weighting is from 0 to 100, 0 being the lowest and 100 being the highest. If you want to select vertices that are already weighted to a bone, hold down the shift key and select the bone.

After you have weighted all the vertices, freeze the mesh and rotate/move the mesh around. Use only the root bone to move the whole character (this should be the only bone with translation keys). Rotate joints, make sure it looks nice. DON’T scale bones. RF Bone doesn’t like it.

HINT: You can setup a “test pose” animation with frame 0 being the default setup pose and frame 30 being a pose with all the joints bent. Then you can just scrub the time slider while you’re still setting up the character to see how things deform and make changes.
Setting up LODs:

LOD’s are “Levels of Detail” models. They are basically the same character with lower geometry. If you want them for your character (And you do want them), you’d basically polychop your model, reset the transform, and follow the same setup instructions as the higher resolution mesh. When you export the .vcm, you named it XXXX_b.vcm for the middle resolution mesh, and “XXXX_c.vcm” for the lowest resolution mesh. “XXXX” is the name of the original .vcm. (i.e., masako.vcm would have masako_b.vcm and masako_c.vcm)

Using BIPED:

If you want to use Biped to animate with, follow these steps. Please keep in mind that not all robots will be able to use Biped. If a robot has part on their arms that translate along an axis, don’t use Biped. But if they are a typical humanoid with arms and hands, use Biped. (NOTE: There may be cases where you can and want to mix Biped with custom FK bones, see step 9). ONLY BEGIN THIS STEP IF YOU HAVE ALREADY SETUP YOUR CHARACTER WITH RFBONE. You cannot use Biped bones as your bones for setting up a character. They must be FK Bones.

1) Hide Mesh, Unhide FK bones and freeze them.

2) Make a Biped with the right amount of bones.

3) In figure mode, resize the Biped so that the pivot points of each bone match up to their corresponding FK bone. Use the non-uniform scale, it works best.

4) Edit mesh each Biped bone and reshape them to fit each corresponding FK bone. Don’t worry about it being perfect, you actually want it to be a little different.

5) Once Edit meshing is done, select the whole Biped and make a selection set called “Bones-BipedOnly”.

6) Unfreeze FK bones.

7) Use the link tool and link each FK bone to it’s corresponding Biped bone. NOT vice versa, you’ll break the Biped.

8) Once they are all linked, make sure they move/rotate right.

9) If there are extra FK bones, like a turret on a shoulder or an antenna, you don’t need to Biped it. Just leave it as an FK bone and animate this FK bone. The Biped is more for the legs than anything else.

10) TIP: if you have bones in your setup, that are not going to be linked to Biped bones, they will be exported with linear keyframes. That means say goodbye to any smooth movement you have on them. In order to work around this, I suggest you make a copy of those bones, naming them “IK-Skirt-Left01”, etc, and linking each FK bone to its corresponding IK bone. This way, the animation will get exported the same way the FK bones that are linked to Biped bones gets exported (at the specified framerate)

11) Select the bones you would actually be animating (all the Biped bones, any extra FK bones) and make a selection set called “XXXX-BonesAnim”. Hide the other FK bones.

12) Make sure that the deformation with the Biped pivot point locations works and that you didn’t forget to link any FK bones. Make any adjustments necessary.

13) Make keys for the BIPED bones at frames 0 and 1, and adjust each key continuity to be at 0.

Now the setup is complete, and ready to be animated.

IMPORTANT: I will once again stress this point. Make sure you keep frame zero at the character’s rest pose. THIS IS VERY IMPORTANT. If you have to add a bone or add tags later, or do ANYTHING to the mesh in ANY animation file, this frame is where you would do it, since it will remain consistent throughout all the files.

Weighting Bones:

OK, bone weighting is different from vertex weighting. Bone weighting determines the amount a bone will blend from one animation file to the next, “in game”. The weights go from zero (no blending) to 10 (full blending). Here’s how to weight the bones:

1) Unhide Mesh and FK bones.

2) Select Mesh

3) In the RF Bone modifier, go to the “MVF Parameters” list and click on the bones you want to weight. Use the control key to select multiple bones.

4) Take the bone weighting from the list below and plug them into the box next to the bone names.

Now, for the original setup file, weight them for Ready/Stand. It’s the easiest one to do, since most animations will have this weighting. For each other type of animation (they are listed), set those bone weightings.

Bone Weighting Chart:

Animation
Spine
Arms
Legs
Hip/Root
IK Exporting

Stand
40
20
100
20
15

Walk /Run
40
20
100
80
15

Attack Firing / Flinch / Reload / Talk
80
100
0
0
15

Death
100
100
100
100
15

Exporting .vcm files:

Once the setup is complete, you need to export the .vcm file. The .vcm file is the actual geometry of the character, and it stores what bones move what vertices.

1) Select the mesh.

2) Click “Export” button in RF Bone .

3) Here it will bring up a box for your prop tags. Make sure the ones you want to export are visible, and select them. Then click “select”.

4) Go to your local project tree.

5) Save the .vcm in the models folder (name it appropriately for what the character is).

Exporting .mvf files:

For every animation you do, you must export it as an .mvf file. This file stores all the motion/bone data for each animation. After you weight the bones, export it as follows:

1) Make sure all FK bones NOT linked to BIPED have position and rotation keys at the first and last frame. Any bones linked to BIPED bones will have keys placed at a specified framerate. You must remove keys from ALL FK bones that are linked to Biped bones, otherwise, RF Bone will ignore the fact that the bones are linked to Biped bones when you export. So make sure ONLY FK bones, that aren’t linked to Biped bones, have keys.
2) Select the mesh.

3) In the “MVF Parameters”, there are boxes for Ramp In and Ramp Out. Depending on your animation, you set these differently. These values are the amount of time (frames) this animation will be blended to and from. See chart below for general values, but keep in mind you may have to play around with them to make them look right, as each animation is different.

Animation
Ramp In
Ramp Out

Ready / Stand
3
3

Walk / Run
3
3

Attack Firing / Flinch / Reload / Talk
5
10

Death
5
0

4) Click “Export” button under “MVF Parameters” in RF Bone .

5) Go to your local project tree.

6) Save the .mvf in the motions folder.

Naming Conventions for MVFs:

Each character has a basic animation set. Standing, Walking/Running, Attacking, etc. Some might not have walking, as they are flight only. This is special case, so these four are the base. The naming of the MVFs is the same for ALL characters, with one difference:

IMPORTANT: There has to be a four-letter code unique to each character in front of each MVF name. Only four letters!

For example, the Ultor Suit’s code is ULT1. A name of his animation would then be “ULT1_stand.mvf”. These have to be different for each character, and must be present on each character. Another example: you have a village man, say VMN4, who talks, walks, stands, runs normally. then the same model is used for another village man whose stand state is him sitting, and he does not move from the sitting position. Name this sitting village man VMN5, NOT VMN4_sitting. The 4 letter code must be different for EVERY character.

Here is an example list of how naming should go, minus the 4 letter code at the beginning that is specific for each character:

MVF name

Animation
Stand.mvf

Standing, in attack mode (arm up to fire, etc)

Stand_idle.mvf
Standing, in non attack mode. Generally in a guarding or shut down position

Hover.mvf
Hovering, in attack mode

Hover_idle.mvf
Hovering, arms down, just floating there.

Walk.mvf
Walking, in attack mode

Walk_idle.mvf
Walking, arms swinging like normal.

Flying.mvf
Flying, in attack mode

Flying_idle.mvf
Flying, arms at side or doing something non-attack like. (
Attack_(attack type).mvf
Attacking, doing whatever he does to attack.

Re-Using MVF Animation sets across multiple characters:

This section is important. It will help save time and memory when animating characters and getting them in game. The premise is, to have multiple characters use the same MVFs. So all guards in RF, for example, would share animations and not take up memory that can be used elsewhere. Here’s how it works:

1) Make sure you know ahead of time general design ideas for the characters. So if there are 2 guards, and one has hair and the other doesn’t, put bones in for the pony tail even though one wont use it.

2) Make the most complex guards first. The one with armor, or long hair, etc, so you can put the bones in for them. They won’t be used for everyone, but they are there.

3) Make sure the characters are modeled in the same proportion (all pivot points should be in the same spot). **This is important. Make sure the meshes of the characters that will share skeletons match up PERFECTLY along the major jointed areas (shoulders, elbows, wrists, must match seamlessly in a front and top view, pelvis, knees, ankles must match seamlessly in a front and side view). If they don’t match, fix it so they do.

4) Now, when you get the characters, they will all share the same FK setup. That way, all you need to do is setup and export the VCM, and it will use the same MVFs as the first guard you animated.

As a little helper, if you were to create a character with Masako’s (the sample file character) proportions, you could use her skeleton, set the character up, and use the already existing animations for that character.

Adding Bones to an already setup and RF-Boned Character:

If you have a character already setup, and you want to add bones to it or are copying a setup to a mesh that requires extra bones, do the following:

1) The bones MUST be at the end of a hierarchy. This means you can add things to the hierarchy, but cannot add them in between bones. See diagram below, where Spine1 is the start of the hierarchy, and “Shoulder” is the new bone.

Spine1(Spine2 (Shoulder

is RIGHT

Spine1(Spine2 (Shoulder (Upperarm
Is WRONG, since Upperarm was originally linked to Spine2

2) If the setup is only FK, skip to part 3.

a) If the setup is a BIPED setup, ie the FK bones are linked to the BIPED bones already, you must re-link the FK bones into their original FK hierarchy (the one used when RF Bone was applied).

3) Reset X-Form on the NEW bones only, and collapse the stack.

4) Link the new bones to an appropriate FK bone.

5) Click “Add Bones”, with ALL FK bones visible, and select the new FK bones along with the old ones.

6) Click “Hierarchy”. This will reinitialize the FK hierarchy.

7) If the setup is only FK, skip to part 8.

a) If the setup was BIPED, re-link the FK bones to their corresponding BIPED bones.

8) Export a test MVF and V3D/VCM to see if it exports without a crash.

9) If it exports OK, assign the appropriate vertices to the new bones.

10) Re-export the new V3D/VCM for the new character/setup, and start animating.

Adding Prop Tags to your Character:

IMPORTANT: If there are weapons to be held by a character, you need to make dummy objects parented to the FK hand bones of the character.

Prop dummies should be aligned as if they were created in the FRONT viewport. That is the Z axis should point outwards toward the front of the character in the setup pose, or be the same as the blade of a sword. If you just create them in Front view, you’ll be fine.

IMPORTANT: If you want to animate the Prop Dummies, usually needed for large or two handed weapons, the prop dummies MUST be part of the initial FK bone hierarchy and picked as a BONE when the character is first setup.

Otherwise, you can simply have them as tags. To do this, just pick them as tags when you go to export your V3D/VCM.

The tags for you RF character should be as follows (see Sample Max file): “primary_weapon_1”, where the character will hold their weapon. “csphere_0”, “csphere_1”, “csphere_2” are collision spheres which determine the character’s collision with the world. See the sample Max file for how these should be linked and placed. They are in the “dummies” selection set.

Using the entity.tbl:

So you’ve got your character setup, animated and exported. What next? Here’s a brief view of the entity.tbl, which is the table file you add your characters to. I’ll use, as an example, the entry for Masako, who is the sample character in the sample max file.

Entry Name
Entry Contents
Description

Name:
“masako”
This is the name of the character in game.

$V3D Filename:
"masako.vcm"
This is the name of the .vcm you exported for this character.

$LOD Distances:
{6 9}
This is the distance, in meters, that the game will draw the LODs for your character, if you have them.

$Allowed Weapons:
("scope_assault_rifle")
These are the weapons the character is allowed to use.

$Default Primary:
"scope_assault_rifle"
This is the weapon the character starts out with as a default

+State:
"stand"
A state is an animation that loops when no action is played, ie, standing, walking, running. If you are sharing animations with another character, you’d add that character’s MVFs here.

+Action:
"reload"
A action is an animation like firing, reload, flinch. It plays over the state, blending with it. If you are sharing animations with another character, you’d add that character’s MVFs here.

$Collision Sphere:
"csphere_0"
The entry for your character’s collisions spheres.

This is a pretty basic explanation, but look at the table file and you’ll see what does what. Have fun, experiment (
If you have questions regarding this tool, email:

rftools@volition-inc.com

We don’t support these tools full-time, or completely, but we’re happy to answer questions as our schedules permit.

